Topic 5

Layout Design

Peter Cheung Department of Electrical & Electronic Engineering Imperial College London

> URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

Layout and Cross-section of an inverter

Layout & Fabrication

- Fabrication uses a set of layers that are usually not exactly the same as the layout layers that the designer use because:
 - It is easy to combine some layers together for example, all "active" layers are diffusion layers (n+ and p+ diffusion) merged together.
 - Other layers used for fabrication can be deduced from other layers. For example, the n-well region can be deduced from the p-type diffusion.
 - Therefore most layout CAD tools use mask layers that are more intuitive to the layout designer, and map to the real mask later.
- CAD tools are used to generate the real mask layers for fabrication
 - Generating the manufacturing mask data is called 'tapeout'
 - Some geometrical layout rules are created to make sure that this tapeout process is possible.
- We will be using Steve Rubin's Electric (version 8.05) as the main layout editing tools. Install and run Electric, and bring out the User's Manual. Read Chapter 2: Basic Editing. Complete Labs 1 & 2 (from course webpage).

Electric Handles Objects

- Most CAD layout systems treat the IC layout as geometric layouts overlapping. For example, polysilicon layer overlapping n-diffusion gives you a n-transistor.
- Electric treat transistors and contacts as objects (called nodes). Read Chapter 1.6 of Electric User's Manual for the fundamental concepts.

Electric Connectivity

- Nodes are connected together using wires (called arcs).
- You must explicitly CONNECT wires to OBJECTS. Simply having overlaps of colour layers does not imply that they are electrically connected.

ndiff wire

pdiff wire

Electric Handles Objects

What is this circuit?

PYKC Oct-25-10

Layout Design Rules

- Design Rules specifies the constraints on layout. Two types of layout constraints are important for this course:
 - Resolution constraints
 - Alignment/overlap constraints
- Resolution constrains specify:
 - Smallest width feature than can be used (e.g. channel length, wire width)
 - Smallest spacing that will guarantee no shorts
 - Governed by lithography and processing steps for technology used
 - Resolution often depends on the smoothness of the surface & how planar the process is.
- Alignment/overlap constraints specify:
 - Alignment between layers
 - Minimum overlaps or overhangs:

Scalable Design Rules and λ

- Design rules can be expressed in absolute physical units, e.g.
 - poly width 0.3μm
 - poly spacing 0.45μm
 - metal width 0.45µm
 - metal spacing 0.45μm
- Typically not multiples of one another in order to get the densest layout
- Difficult to remember
- Difficult to port from one process to another

- Scalable design rules express dimension in normalised units called lambda (λ)
- Normalise everything so the minimum gate length (i.e. width of poly gate) is 2*λ
- All other design rules are expressed in integer multiples of λ
- For example:
 - poly width 2 λ , space 3 λ
 - metal width & space 3 λ
- Usually requires rounding up
- These are subsequently scaled to generate masks for a variety of processes

Scalable Design Rules +

- MOSIS SCMOS design rules uses lambda (λ) based rules
 - Easily ported to many fabrication lines
 - Can scale to use smaller geometry in future
 - λ was initially 1.5 μ , now it can be smaller than 0.15 μ
- Conservative and less efficient in area because:
 - Use only Manhattan Layouts i. e. everything are rectilinear and use only 90 degree angles
- Disadvantages (on area) is out-weighted by advantages
- Course web page gives all design rules for MOSIS Scalable process
- We target to 0.18μ technology

Some Important Geometric Rules (in λ)

Resolution rules:

LAYER	WIDTH	SPACE	
poly	2	3	
diff	3	3	
metal1	3	3	
metal2	3	4	
nwell	12	6	
cut	2	2	
via	2	3	

Alignment rules:	
cut/via surround	1
poly overlap diff	2
poly space to diff	1

Notes:

Cut plus surround is 4 causes layout to fall on an 8λ grid

Some Important Geometric Rules (in λ)

Well Spacing

- N-trans and p-trans separate by 12λ with room for one wire in between.
- Metal1 pitch is 6λ and Metal2 pitch is 8λ .
- Contact size (including diffusion) is at least 4λ.

Estimate area

- Estimate area by counting wiring tracks
 - Multiply by around 8 to express in λ . (Assuming you use metal 1 and 2 pitch of 8.)

Stick Diagram

- A stick diagram is a symbolic layout:
 - Contains the basic topology of the circuit
 - The relative positions of the objects are roughly correct, e.g. transistor 1 is to the right of transistor 2, and under transistor
- Each wire is assigned a layer, and crossing wires must be on different layers
 - Wires are drawn as stick figures with no width
- The size of the objects is not to scale
 - Add features such as wire easily in between other wires
- It is always much faster to design layout on paper using stick diagram first before using the layout CAD tool

Layout issues

- In CMOS there are two types of diffusion
 - ndiff (green) Poly crossing ndiff makes nMOS transistors
 - pdiff (also green in Electric) Poly crossing pdiff makes pMOS transistors
- Be careful, ndiff and pdiff are different
- You can't directly connect ndiff to pdiff
 - Must connect ndiff to metal and then metal to pdiff
- Can't get ndiff too close to pdiff because of wells
- Large spacing rule between ndiff and pdiff
- Need to group nMOS devices together and pMOS devices together because of large spacing rule between ndiff and pdiff

Planning a layout design

Here are a few simple guidelines to CMOS layouts

- You need to route power and ground (in metal), no automatic connection
- Try to keep nMOS devices near nMOS devices and pMOS devices near pMOS devices.
 - nMOS usually are placed near Gnd, and pMOS near Vdd
- Run poly vertically and diffusion horizontally, with metal1 horizontal (or the reverse, just keep them orthogonal)
 - Good default layout plan
- Keep diffusion wires as short as possible (just connect to transistor)
- All long wires (wire that go outside a cell, for example) should be in either m1 or m2.
- Try to design/layout as regular as possible

Example: O3AI

• OR 3-inputs, AND, then Inverter $Y = \overline{(A+B+C)\cdot D}$

Standard Cells

- Uniform cell height
- Uniform well height
- M1 Vdd and Gnd rails
- M2 access to I/Os
- Well/substrate taps
- Exploits regularity

Synthesized circuit using standard cell

- Synthesize Hardware Description Language into gate-level netlist
- Place-and-Route using standard cell library

Pitch Matching

- Design snap-together cells for datapaths and arrays (such as RAM & ROM)
 - Plan wires into cells
 - Connect by abutment like putting lego block together.
 - No extra wire area needed

А	А	А	А	В
А	А	А	А	В
А	А	А	А	В
А	А	А	А	В
С		С		D

MIPS Processor Datapath

- 8-bit datapath built from 8 bitslices (regular)
- Control circuit at the top of the datapath

